

Climate-sensitive health risks (water and food) **Climate change impacts on** water and increasing risk of human exposure to toxic cyanobacteria

Manganelli M. Dept. of Environment and Primary Prevention - Istituto Superiore di Sanità -Viale Regina Elena, 299; 00161 - Rome, Italy

Projected impacts of climate change for this century

Increases of temperature and CO₂ concentrations — major changes in <u>ecosystem structure</u> and <u>function</u>, <u>species</u> interactions and <u>geographical ranges</u>

✓Heavy precipitation events: increasing frequency, increasing flood risk

 ✓ High latitudes and some tropical areas: increase by 10-40% annual average river runoff and water availability

✓ Dry regions, mid-latitudes and dry tropics (presently waterstressed): decrease by 10-30%

✓Larger drought-affected areas

IPCC 2007

Climate change effects on water quality

Increasing temperature

- Prolonged stratification and residence time
- changing hydrological regime

Increasing floods and droughts \rightarrow changes in nutrients concentration

poleward and upward <u>shift in ranges</u> in plant and animal species

✓ Increase in surface pCO_2 → Acidification

Cyanobacteria

- incredibly diverse group of prokaryotes
- many aquatic and terrestrial niches
- 2 40µm

Cyanobacteria habitats

Lyngbya cf. *aestuarii* in hypersaline intertidal flats, Mexico

Nostoc in melt stream in Antarctica

desert crust with Nostoc, Scytonema, in Utah.

a) Calothrix in tepid hot spring Yellostone National Park; b) sheath-pigmented cyanobcteria Norway;

Cyanobacteria blooms

Arthrospira fusiformis, Lake Nakuru, Kenya

Microcystis, Anabaena, Aphanizomenon in Southern Sweden

Cylindrospermopsis raciborskii, Brasilia, Brazil

Cyanobacteria

- primary producers clorophyll a and other pigments – low light intensity
- single or colonial cells mechanisms of buoyancy – calm stratified water, long residence time
- mainly eutrophic water basin
- toxin producers

Cyanotoxins

Chorus & Bartram Eds, 1999.

Toxin group ¹	Primary target organ in mammals	Cyanobacterial genera ²			
Cyclic peptides					
Microcystins	Liver	Microcystis, Anabaena, Planktothrix (Oscillatoria), Nostoc, Hapalosiphon, Anabaenopsis			
Nodularin	Liver	Nodularia			
Alkaloids					
Anatoxin-a	Nerve synapse	Anabaena, Planktothrix (Oscillatoria), Aphanizomenon			
Anatoxin-a(S)	Nerve synapse	Anabaena			
Aplysiatoxins	Skin	Lyngbya, Schizothrix, Planktothrix (Oscillatoria)			
Cylindrospermopsins	Liver ³	Cylindrospermopsis, Aphanizomenon, Umezakia			
Lyngbyatoxin-a	Skin, gastro-intestinal tract	Lyngbya			
Saxitoxins	Nerve axons	Anabaena, Aphanizomenon, Lyngbya, Cylindrospermopsis			
Lipopolysaccharides (LPS)	Potential irritant; affects any exposed tissue	All			

Adapting to Climate change in Time

MCs acute toxic potential is congener-dependent

80 congeners up to now; half-life 21 days/2-3 months (Jones & Orr, 1994, Ressom et al 1994)

LD₅₀ intraperitoneal

Variation in toxicity in the image of the im

(Feurstein et al., 2010)

Bloom toxicity

act Adapting to Climate change in Time

Cyanobacteria toxin production:
 Toxic/non-toxic genotype (Briand et al., 2008; Okello et al., 2010; Orr et al., 2010)

P. rubescens

Manganelli et al., 2010

Bloom toxicity

Cyanobacteria toxin production:

- Expression of toxin gene (Kurmayer et al., 2004; Wood et al., 2010; Fewer et al., 2010)
- Growth rate
 - -Nutrient concentration (Oh et al., 2000)
 - -Light intensity (Wiedner et al., 2003)

Bloom toxicity

✓ Pathogen reservoir:

- Vibrio spp., associated to Anabaena, Nostoc Hapalosiphon (Islam et al., 2004; Eiler et al., 2007)
- Legionella cyanobacteria mat (Tison et al., 1980)
- Pathogenic Aeromonas (Berg, 2009)

Climate change and cyanobacterial dynamics

Increasing temperature/stratification

- ✓Abundance and diffusion
 - Optimum growth rate at temperature higher than eukaryotic algae in lakes (Johnk et al., 2008; Elliot, 2010)

Increased temperature will increase cyanobacterial blooms in the Baltic Sea

Granéli, Romero, Salomon (in prep)

Increasing temperature/stratification Density and ratio of toxic/non toxic strains

- Anabaena and Aphanizomenon (Rapala et al., 1993); Microcistys (Davis et al., 2009)
- ✓Toxin/s production

-Decrease in CYN produced by *A. flos-aquae* and *C. raciborskii* (Preußel et al., 2009; Saker & Griffiths, 2000); most optimum T between 20-25°C, decreasing at higher T (Sivonen & Jones, 1999) -Variation in MCs variant profile (*Planktothrix* aghardii, Light intensity, Tonk et al., 2005)

Control by predators/viruses/lysing-bacteria

-Synechococcus (Chu et al., 2010)

✓ Abundance

Buoyant species are favoured; *Trichodesmium* increase (Levitan et al., 2007)

✓ Density and ratio of toxic/non toxic strains

Toxin/s production

MCs congener profile according to limiting factor (Van de Waal et al., 2009)

Floods and droughts

- Elevated winter-spring run-off and protracted droughts

 nutrients and bloom capacity (Paerl and Huisman, 2009)
- Washout of cyanobacteria to coastal environment from freshwater systems (Carmichael, 1997) and possible cyanotoxin accumulation in seafood

Floods and food contamination

Max concentration of MCs in brackish water Biomagnification of MCs in edible fishes

Lehman et al. 2005/2010

Floods and food contamination

Deaths of marine mammals through ingestion of contaminated farmed and free-living marine clams, mussels and oysters – biomagnification of MCs

Adapting to Climate change

in Time

Miller et al. 2010

Increasing salinity

Salt tolerant species (*Microcystis*, *Nodularia*, *Aphanizomenon*, Tonk et al., 2007)

Toxicity (*Microcystis*, Mazur-Marzec et al., 2005)

Human vulnerability

 Magnitude of the <u>exposure to the climate-</u> related hazard

✓ intrinsic characteristics of the population itself

Fig. 4. People from a village at the outlet of Lake Pequenos Libombo, Mozambique. The water in this river is used for cooking, drinking, swimming and washing clothes. When the photo was taken, September 2002, the phytoplankton community was dominated by microcystin-producing *Microcystis*. (Photo: *Annadotter*).

Conclusion 1- Research needs

Temperature - CO₂ increase (pH) - Salinity
✓ Toxicity
✓ Congener profile

Prediction

Management measures to prevent increasing exposure

Fig. 1. A bloom of cyanobacteria in the recreational Lake Finjasjön, Sweden. (Photo: Cronberg).

Polymorphism of GST system

MC-LR concentration range used (0.25–50 µM)

	Vmax ^a	Km ^b	Clic
T1-1	6.96	108.6	0.064
A1-1	2.69	67.89	0.040
M1-1			0.029
A3-3			0.025
P1-1	4.71	831.3	0.006

a = pmolGSMC/(μ g prot • min), b = μ M, c = pmolGSMC/(μ g prot • min • μ M). Cli was obtained or as Vmax/ Km ratio, either as the slope of linear regression

Buratti et al., 2011

Conclusion 2 - Research needs

 Open and developing field needed to better constrains risk evaluation

Acknowledgments

Dr. Enzo Funari, dr. Emanuela Testai, dr. Edna Graneli and the crew of Lab. Water Quality - ISS